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Learning

Machine Learning (ML) methods look for patterns that persist across a large collection
of data objects

ML learns from new data

Key concepts
Curse of dimensionality
Random projections
Regularization
Kernels
Bootstrap aggregation
Boosting
Ensembles
Validation
No Free Lunch Theorem

Methods

Supervised
Classification (Discriminant Analysis, Support Vector Machines, Trees, Set Covers)
Prediction (Regression, Trees, Neural Networks)
Unsupervised
Neural Networks
Clustering
Projections (PC, MDS, Manifold Learning)
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Learning

The Curse of Dimensionality
Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. NJ: Princeton University Press.

When the dimensionality of a space increases, the volume of the space increases
so fast that points in that space become sparse.

Local methods are less local when the dimension increases

Neighborhoods with fixed points are less concentrated as dimension increases

High dimensional functions tend to have more complex features than low-dimensional
functions, and hence are harder to estimate

The histogram of interpoint distances tends toward a spike
Volume of a (unit) hypercube grows exponentially with dimensionality

This has nothing to do with computational complexity increasing with
dimensionality or the difficulties of exploring in many dimensions

“The curse of dimensionality is a popular way of stigmatizing the whole set of troubles
encountered in high-dimensional data analysis; finding relevant projections, selecting
meaningful dimensions, and getting rid of noise, being only a few of them.”

Remediations
Projections
Next
Regularization
Next(Next)
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Learning

Random Projections

"}'l

t, Johnson-Lindenstrauss lemma

Johnson, W.B., and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a

Hilbert space. Contemporary Mathematics 26. Providence, Rl: American Mathematical
Society, 189-206.

A set of n points in high dimensional Euclidean space can be mapped into an O(logn/€?)
-dimensional Euclidean space such that the distance between any two points changes
by only a factor of (1 + €)
;k = XnpRpk
RR~I
Achlioptas, D. (2001). Database-friendly random projections. Proceedings of the

twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems -
PODS '01, 274.

Li, P., Hastie, T.J., and Church,, K.W. (2006). Very sparse random projections. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’06), 287-296.
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Learning

Regularization

Model parameters Tikhonov
06={0,:=1,---,p}
Objective function (Loss + Regularization)
0(6) = L(6) + Q(6)
Wahba
Loss
Ly = Z i — il (least absolute values)
=1
Ly = Z(yi — ;)2 (least squares) Poggio

=1

Regularization (penalty for complexity)

01(0) = \||0]|1 (lasso)
Q2 (0) = \||0])? (L2 norm)

The objective function specifies a tradeoff between bias and variance
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Learning

Kernels

Suppose we have the circular configurations of two sets of points below
We use the map R? — R to get a linear boundary that separates the two sets
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Learning

Kernels

Invert equation for decision boundary plane on left 0 = 1 — /22 + 3?2
And we get the decision boundary circle on right 2 + y2 =1

) -3 -2 -1 0 1 2 3 4
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Learning

Kernels
The Kernel Trick (Hilbert, Mercer, Wahba, others)

If our algorithm employs dot products, we can use a kernel trick
The kernel works in R? (or RP) to do what we were doing in R3 (or Rd)

a-b=ab
= a1by + agbs + - - -anby, a

n

i=1 b
= [lal[]|b]| cos &
Given two vectorsaand b in R?
A kernel is a function K (a, b) that implements a - b in R
There is a more general formulation for high-dimensional data analysis
It involves Reproducing Kernel Hilbert Space
But we don’t need it here, and it is beyond the scope of this presentation

RKHS allows infinite dimensions and can be a space of functions and abstractions
It was a major advance for high-dimensional analytics (see Donoho)
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Learning

Kernels
The Kernel Trick

The kernel function saves time and space (when p << d)

But we are not home free

We still have to identify a kernel that corresponds to the function we want
Suppose our function is ¢(.)

Then K(a, b) = <¢(a), ¢(b)>

Popular kernels are
Polynomial: K(a,b) = (aa’b + ¢)?

_lla—b]]?

Gaussian: K (a,b) = exp ( 952
o

) (This is a radial basis function)

Sigmoid: K (a,b) = tanh(aa’b + ¢)
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Learning

Bagging (Bootstrap Aggregation)
Breiman L. (1996). Bagging Predictors. Machine Learning, 24, 123-140.

Construct a bunch of bootstrap samples (sampling with replacement)
Fit each sample

Plurality vote determines prediction

This procedure reduces variance by aggregating
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Learning

Boosting

Schapire, R.E. (1990). “The Strength of Weak Learnability”. Machine Learning, 5,
197-227.

Train a bunch of “weak learners” (stumps, subset models, etc.)
Compute prediction accuracy for each

Combine them into aggregate prediction, weighting vote by accuracy
Result is “strong learner”
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Learning

Ensembles

Hansen, L.K., Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence 12, 993-1001.

* Anensemble is a set of base learners whose individual decisions are combined in some way,
typically by weighted or unweighted voting, to classify new examples.

* Bagging and boosting are both ensemble methods
*  But ensemble methods are more general

* We can combine completely different learners and benefit

* A necessary and sufficient condition for an ensemble of learners to be more accurate than any
of its individual members is if the learners are relatively accurate and diverse.

* Alearneris accurate if it has an error rate better than random guessing
* Asetof learners is diverse if they make different errors on new data points

*  This works because uncorrelated errors of individual classifiers can be reduced through
averaging
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Learning

Validation

A fundamental aspect of empirical science is replication
There is no such thing as a critical experiment
Experiments change our prior beliefs through likelihoods
Replication increases our confidence
Failure to replicate decreases our confidence
We can never really replicate an experiment
Randomization works best for large samples
Conditions change
But it is the best method we know
We do our best to identify the population from which we will sample
We do our best to replicate the random sampling procedure
We do our best to replicate the random assignment protocol
We do our best to use the same experimental procedures

We do our best to use the same analytic methods
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Learning

Validation

Applying a model to a new sample shrinks goodness of fit
Wherry, R. J. (1931). A New Formula for Predicting the Shrinkage of the Coefficient of
Multiple Correlation. Annals of Mathematical Statistics, 2, 440—457.
Psychologists became aware of this problem in the 1960s
Robyn Dawes, Lou Goldberg, Paul Slovic, Lee Cronbach, Amos Tversky, ...
The shrank their R? values with Wherry’s formula when presenting models
Soon thereafter they did cross validation for other models
They used cross validation to guard against over-fitting

Cross validation

Split a sample in half
Early in the game, they used first half-second half
But this risked bias, so they did a random split

Fit the model based on the first (training set) to the second (test set)
The empirical error on the test set is an estimate of model generalization

14 Copyright © 2016 Leland Wilkinson



Learning

Cross Validation

Types
Split-half
Leave one out (impractical)
K-fold CV (popular)
Split file into k pieces
For each k, train on other k-1 pieces, test on the kth

Average k goodness-of-fit statistics

Problems

What is the population?
This is @ major problem for Big Data

Other researchers testing (replicating) your method can’t use your data
They can’t find another dataset from the same population
because yours was a convenience batch (you had the whole population)

K-fold CV is not replication (in the same sense that scientists use the word)
Yu, B. (2013). Stability. Bernoulli, 19, 1484-1500.

Researchers often use CV to select best model or optimize parameter values
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Learning

Accuracy

How do we assess the accuracy of a model on a set of data?
Confusion matrix (2 categories)

Predicted
Yes No
< Yes True Positive False Negative
2
Q
< No False Positive True Negative

Tally each cell and compute error rate from tallies
Overall error rate is falses divided by totals
Problems

When table is unbalanced, interpretation of overall error is difficult

This problem has a long history in the statistics of tables
There are well-known corrections (Cohen’s kappa), but they are not widely used by ML people
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Learning

Accuracy

The Receiver Operating Characteristic (ROC) curve
Sensitivity is Predicted Positives divided by Actual Positives
Specificity is Predicted Negatives divided by Actual Negatives
Plot sensitivity (hit rate) against 1-specificity (false alarm rate)

Changing threshold in classifier alters positions on curve (step function)
High thresholds reject almost everything (southwest)
Low thresholds accept almost everything (northeast)

100%

80% -
Predicted :
0% -+ T T T T
0% 20% 40% 60% 80% 100%

Adapted from Wikipedia and NCSS False Positive Rate (1-Specificty)

60% 1 /

40% 4/

Actual

True Positive Rate (Sensitivity)

20%
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Accuracy
Area Under the Curve (AUC)

Computing area under ROC curve allows comparisons of different classifiers

But

Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area
under the ROC curve. Machine Learning, 77, 103—-123.

AUC is equivalent to using different metrics to evaluate different classification rules.

i.e., using one classifier, misclassifying a class 1 point is P times as serious as
misclassifying a class 0 point, but, using another classifier, misclassifying a class 1 point
is ¢ times as serious, where p # q.
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No Free Lunch Theorem
Wolpert, D.H., Macready, W.G. (1997)

If an algorithm performs well on a certain class of problems then it
necessarily pays for that with degraded performance on the set of all
remaining problems
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Supervised Learning

Classification
Vast field
Given a set of categories and associated metadata, predict categories

Chief methods
Linear Discriminant Analysis (LDA)
Quadratic Discriminant Analysis
Support Vector Machines
Decision Trees
Random Forests
Set covers
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Supervised Learning
Classification

Fisher’s Linear Discriminant Function— Two groups
Covariance matrices assumed to be the same multivariate normal

Wodel for XES

Wodel toxr WO

Wilkinson, Blank & Gruber, 1996
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Supervised Learning
Classification

Linear Discriminant Analysis

—

B = between groups covariance matrix
— _1 g 5o N7, — .
bij = g—1 > et "k (Tik — Ti) (Tjk — Tj)
W = within groups covariance matrix
_ 1 g
W = —n—g kzl(nk — 1)Sk
& /
> v'Bv
max A = — ——
v v Wv
(B-—XAW)v =0
L ; . Generalized eigenvalue problem

400 500 600 700 800
GRE

22 Copyright © 2016 Leland Wilkinson



Learning

Supervised Learning
Classification

Linear Discriminant Analysis — Three groups

Hastie, Friedman & Tibshirani, 2011

23
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Supervised Learning

Classification
Quadratic Discriminant Analysis (QDA) — Three groups
This example shows fits assuming covariance matrices are the same
Obviously violated in this case
QDA fits separate covariance matrices

But often it is not needed because adding quadratic terms to linear model suffices

Hastie, Friedman & Tibshirani, 2011
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Supervised Learning

Classification

Quadratic Discriminant Analysis (QDA) — Three groups
Here’s what Hastie, Friedman, Tibshirani have to say:

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1 X0, X%, X2 ). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

25
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Supervised Learning

Classification
Simple parametric discriminant models LDA and QDA

Both LDA and QDA perform well on an amazingly large and diverse set
of classification tasks. For example, in the STATLOG project (Michie et
al., 1994) LDA was among the top three classifiers for 7 of the 22 datasets,
QDA among the top three for four datasets, and one of the pair were in the
top three for 10 datasets. Both techniques are widely used, and entire books
are devoted to LDA. It seems that whatever exotic tools are the rage of the
day, we should always have available these two simple tools. The question
arises why LDA and QDA have such a good track record. The reason is not
likely to be that the data are approximately Gaussian, and in addition for
LDA that the covariances are approximately equal. More likely a reason is
that the data can only support simple decision boundaries such as linear or
quadratic, and the estimates provided via the Gaussian models are stable.

Hastie, Friedman & Tibshirani, 2011
Amen
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Supervised Learning

Classification
Kernel Discriminant Analysis

2\ wModel tor WO

Wilkinson, Blank & Gruber, 1996

27
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Learning

Supervised Learning

Classification

Support Vector Machines (SVM)
Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Aim for wide margin separating 2 classes
Focuses estimation on points near margin
But less effective on Gaussian data
Vladimir Vapnik devised this formulation

But real power comes from pairing SVM
with kernels

Hastie, Friedman & Tibshirani, 2011
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Supervised Learning
SVM with kernels was the darling of ML people for the last decade

It’s mathematically appealing
It has spawned endless papers offering minor refinements
It leverages kernels (but other methods can too)

But there are issues

Picking kernels and parameters is a black art
Proponents try to use cross-validation to do this automatically

That increases the possibility of overfitting
SVMs are slow and a pig on memory

SVMs work only with pairs of classes

Proponents have developed one-against-all modifications
This increases complexity

SVMs have not been found to outperform other classifiers
Random forests and logistic regression trees often do better
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Supervised Learning

Decision trees (Recursive Partitioning)

Automatic Interaction Detection (AID)

Morgan, James N. and Sonquist, John A. (1963). Problems in the analysis of survey data,
and a proposal. Journal of the American Statistical Association 58, 415-435.

The authors presented AID as a method for analyzing survey data
The l'in AID referred to interactions because it represented them directly in a tree
The idea was to eliminate non-significant interactions in ANOVA models

A VERY clever idea, for which they do not get sufficient credit

No Interaction Interaction
7 a\ /A \
\\A,/‘ \A,/

/o o\ VN 7
o X o WP
V" /o \ ‘/ N\ 0\ / o\ / g\ ./ N 7 o\
'\C/ \C/ ‘\C/ \C/ \D/ \E/ '\F/' \_G/
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Supervised Learning
Decision trees

Automatic Interaction Detection (AID)
Predicting admission decisions at Yale Medical School

GRADE POINT AVERAGE

- n=727
<347 —_ >347
342 385
MCAT VERBAL MCAT VERBAL
<55/ 943555 <535 /54 3%335
RE JECT MCAT QUANTITATIVE " REJECT | \.NTERWEW
©) <655 >655 (19) (49)
122 127
| REJECT | {INTERVIEW
(45) (46)

Milstein, Burrow, Wilkinson, Kessen (1975)
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Supervised Learning
How decision trees carve up space

Linear classifier

Recursive partitioner

32
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Supervised Learning

Decision trees
Splitting functions

Predictors
+ . .
S Categorical Continuous
©
§_ Categorical Phi-square Phi-square
2 | Continuous SSWithin Least Squares

Impurity measures
Gini
Twoing
Entropy / chi-square
Categorical predictors

Need to consider every combination of categories

EXPENSIVE!
Cheesy alternative is to scale a predictor by sorting
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Supervised Learning
Decision tree programs

AID

Sonquist, J. A., Morgan, J. N. (1964). The Detection of Interaction Effects. Survey
Research Center, University of Michigan.

CHAID

Kass, G.V. (1980) An Exploratory Technique for Investigating Large Quantities of
Categorical Data, Applied Statistics, 29, 119-127.

Chi-square AID
Multinomial splits at single node
CART

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J.(1984). Classification and
Regression Trees. Belmont, CA: Wadsworth.

Introduced portfolio of loss functions and gave statistical grounding to AID
Introduced Pruning and Classification

ID3/C4.5/C5.0
Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
Derivative of CART
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Supervised Learning

Visualizing Decision trees

Mobiles

Wilkinson, L. (1992). Tree Structured Data Analysis: AID, CHAID and CART. Sun Valley, ID:
Sawtooth/SYSTAT Joint Software Conference.

DANGER

DREAM_SI4F.|EP<I 2

SLO_SLEEP<12.8 BRAIN_WT<58.0
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Supervised Learning

Visualizing Decision trees
Vach, W. (1995). Classification trees. Computational Statistics, 10, 9-14.

Urbanek, S. (2003). Many faces of a tree. In Computing Science and Statistics:
Proceedings of the 35th Symposium on the Interface.

palmitoleic

-- South-Apulia

I- Inland-Sardinia -‘ South-Apulia
<

Calabria South-Apulia
Coast-Sardinia Inland-Sardinia
Calabria

Umbria

North-Apulia Sicily East-Liguria  West-Liguria
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Supervised Learning
Visualizing Decision trees

Check out this site done by one of our most talented young
designers and his statistician partner.

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Test Accuracy
32/35 91.4% 32/35

Training Accuracy
111/111 100% 139/139
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Supervised Learning

Decision Tree Pros
Handles continuous, categorical, and ordered variables in one model
Greedy and fast
Invariant over monotone transformations of predictor variables
Robust to outliers
Missing values handled intrinsically
Easy to interpret

Cons
High variance

Initial splits lead to very different trees
Error at top is propagated down tree
Greedy
Best fitting tree may not be found (similar to a local minimum)

Pruning methods vary and involve chance of over/under fitting
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Supervised Learning

Random Forests
Breiman L. (2001). Random forests. Machine Learning, 45, 5-32.

Follow bagging procedure
Construct a bunch of bootstrap samples (sampling with replacement)
Fit tree to each sample
Plurality vote determines class prediction

BUT

At each split for a given sample, choose a random subset of the predictors
Breiman called resulting trees “stumps”
This reduces correlation of trees across samples due to powerful splitters in early splits

RF may be the most powerful ML prediction method
Breiman claimed it was
Surveys show it (or variants) does beat other ensembles
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Supervised Learning

Gradient Boosted Trees

Friedman, J.F. (2001). Greedy function approximation: A gradient boosting
machine. The Annals of Statistics, 29, 1189-1232.

Build a series of stumps
Build each stump from residuals of previous fit
Stochastic boosting randomly samples from residuals at each step
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Supervised/Unsupervised Learning
Neural Networks

Psychologists, Biologists, Statisticians
McCulloch, Hebb, Rumelhart, Hinton, ...

Sigmoid activation function

Output

n

1Weighted sum of inputs

negative input values lower the sum and suppress the neuron

positive input values increase the sum and cause the neuron to fire

Fundamental model is sums of nonlinearly transformed linear models

41
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Supervised/Unsupervised Learning
Neural Networks

Of all the machine learning algorithms, NNs are the most “black box”
They are really just another nonlinear algebraic statistical model
The sigmoid activation function introduces a wider class of models
If the activation function is an identity, then we just have a set of linear models
NN make their own features, rather than being fed a fixed set
Deep learning models are networks with more than one hidden layer
Fitting weight parameters (on each edge of the graph) done by various methods
Most popular is back propagation, but this is slow
There is a danger of overfitting
So regularization is frequently employed (adding a penalty)
Like SVMs, this is a black art
Don’t try this at home, folks
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